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ABSTRACT 
 
This report presents the results of Task 323-08-14, Principal Components of Orthogonal 
Object-Oriented Metrics, performed by the Software Assurance Technology Center 
(SATC) at NASA Goddard Space Flight Center.  The task developed an approach to 
formulating a set of Orthogonal Object-Oriented metrics.  The research is intended to find 
a way to produce cheaper and higher quality software. The Orthogonal Object-Oriented 
set of metrics will be selected from the core set of metrics that the SATC uses for code 
analysis. 
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EXECUTIVE SUMMARY 
 
The development of a large software system is a time and resource-consuming activity. 
Even with the increasing automation of software development activities, resources are 
still scarce.  There is also a great interest in software metrics due to their potential for use 
as a cost saving device. 
 
This paper presents the research results of the Software Assurance Technology Center 
(SATC) at NASA Goddard Space Flight Center, to develop an approach to formulating a 
set of Orthogonal Object-Oriented metrics.  The research is intended to find a way to 
produce cheaper and higher quality software. The Orthogonal Object-Oriented set of 
metrics will be selected from the core set of metrics that the SATC uses for code analysis. 
 
The set of Orthogonal Object-Oriented metrics obtained in the study was applied to three 
real world industrial strength object-oriented systems to predict their overall quality.  The 
level of quality found in these three systems is classified into three types:  low, medium, 
and high.  The classification obtained for the systems using the Orthogonal Object-
Oriented metrics set were validated with the SATC approach used for their code analysis 
for identifying code quality.   
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1. Introduction 
 
 
The Software Assurance Technology Center (SATC) at NASA Goddard Space Flight 
Center is currently conducting research on an approach to formulating a set of 
Orthogonal Object-Oriented metrics.  The research is intended to find a way to produce 
cheaper and higher quality software.  It was determined by the SATC that there is a lack 
of research being conducted in the area of Orthogonal Object-Oriented metrics.  The 
potential benefit of this research can be applied to both NASA and industry.  
 
Object-Oriented Programming (OOP) is a programming paradigm that is based on 
abstractions of object types in the application [HUD].  The key difference between 
object-oriented programming and structured programming is that the former identifies the 
object types in the applications, while the latter models the applications as a set of 
functions. 
 
There is a general shift in the industry from the structured (traditional) programming and 
development environment to an object-oriented paradigm, and NASA is no exception in 
adhering to this shift.  If organizations wish to make a successful change, they need the 
appropriate metrics for this new paradigm.  One such metrics suite was proposed by 
Chidamber and Kemerer [CHI].  
 
There is also a great deal of interest in software metrics due to their potential for use in 
procedures to control cost of system development and maintenance activities [TEG].  
However, metrics programs are sometimes viewed as being costly with little return on 
investment.  One way of reducing the cost of a metrics program, increasing efficiency, 
and decreasing the intrusiveness caused by the metrics program is to measure “less”.  
This is feasible only if we can obtain at least the same level of accuracy with the reduced 
information obtained by measuring “less”.  A good candidate for accomplishing this task 
is Orthogonal Object-Oriented metrics, if one is working in an object-oriented 
environment.  
 
The set of Orthogonal Object-Oriented metrics proposed in this paper is designed to 
evaluate key features of object-oriented design such as encapsulation, inheritance, and 
polymorphism.  This evaluation is used to classify the quality level of object-oriented 
software systems. 
 
The remainder of the paper is organized as follows:  Section 2 first provides an overview 
of both traditional and object-oriented metrics.  This section also defines and discusses 
the concept of Orthogonal Object-Oriented metrics. The theoretical framework for the 
Orthogonal Object-Oriented metrics set is developed in Section 3. An empirical 
investigation is conducted on three industrial strength object-oriented metrics to validate 
the metrics set in Section 4.  Our conclusions from this empirical study and the research 
results are given in Section 5.  Future research directions are also presented in this 
section.        
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2. Background 
 
 
Traditional and object-oriented programming are fundamentally different and therefore 
different metrics are needed for their evaluation.  According to Moreau [MOR87], 
[MOR89], [MOR90], traditional metrics are inappropriate for object-oriented systems.  
However, research conducted by Tegarden [TEG] has shown that a combination of both 
traditional and object-oriented metrics may give the best results when analyzing object-
oriented systems with respect to their overall quality. 
 
In Subsection 2.1 we define three traditional metrics, that are popular with practitioners 
and researchers.  The Chidamber and Kemerer (CK) metrics suite for object-oriented 
design are given in Subsection 2.2.  Subsection 2.3 defines and explains the concept of 
Orthogonal Object-Oriented metrics.  The SATC uses most of the metrics listed below or 
a modification of them (see [ROS95], [ROS97], [ROS98]). 
 
2.1 Traditional Metrics 
 
Traditional metrics have been applied to the measurement of software complexity of 
structured systems since 1976 [MCC76].  This subsection presents the McCabe 
Cyclomatic Complexity metric along with two other popular traditional software design 
metrics, Source Lines of Code and Comment Percentage. 
 
McCabe Cyclomatic Complexity (CC):  Cyclomatic complexity is a measure of a module 
control flow complexity based on graph theory [MCC99].  Cyclomatic complexity of a 
module uses control structures to create a control flow matrix, which in turn is used to 
generate a connected graph.  The graph represents the control paths through the module.  
The complexity of the graph is the complexity of the module [MCC76], [MCC99].  
Fundamentally, the CC of a module is roughly equivalent to the number of decision 
points and is a measure of the minimum number of test cases that would be required to 
cover all execution paths.  A high cyclomatic complexity indicates that the code may be 
of low quality and difficult to test and maintain. 
 
Source Lines of Code (SLOC):  The SLOC metric measures the number of physical lines 
of active code, that is, no blank or commented lines code [LOR94].  Counting the SLOC 
is one of the earliest and easiest approaches to measuring complexity.  It is also the most 
criticized approach [TEG].  In general the higher the SLOC in a module the less 
understandable and maintainable the module is. 
 
Comment Percentage (CP):  The CP metric is defined as the number of commented lines 
of code divided by the number of non-blank lines of code.  Usually 20% indicates 
adequate commenting for C or Fortran code [ROS95].  A high CP value facilitates in 
maintaining a system.   
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2.2 Object-Oriented Metrics 
 
In 1994 Chidamber and Kemerer [CHI] proposed a now widely accepted suite of metrics 
for an object-oriented system.  Basili validated the metrics suite in 1996 [BAS] and Tang 
in 1999 [TAN].  The six object-oriented metrics are listed below.      
 
Weighted Methods Per Class (WMC):  WMC measures the complexity of an individual 
class.  Two different approaches are used to calculate the WMC metric.  The first uses the 
sum of the complexity of each method contained in the class.  The second approach 
assigns a complexity of 1 for each method in the class and then sums the result.  This is 
equivalent to using the number of methods per class as a measure for WMC [CHI].  The 
number of methods and complexity of methods involved is a direct predictor of how 
much time and effort is required to develop and maintain the class. 
 
Depth of Inheritance Tree of a Class (DIT):  DIT is defined as the length of the longest 
path of inheritance ending at the current module [CHI].  In cases involving multiple 
inheritances, the DIT will be the maximum length from the node to the root of the tree 
[CHI].  The deeper the inheritance tree for a class, the harder it might be to predict its 
behavior due to the interaction between the inherited features and new features.  
However, the deeper a particular class is in the hierarchy, the greater the potential for 
reuse of inherited methods. 
 
Number of Children (NOC):  NOC represents the number of immediate subclasses 
subordinated to a class in the class hierarchy [CHI].  A moderate value for NOC indicates 
scope for reuse and high values may indicate an inappropriate abstraction in the design.  
Classes with a large number of children have to provide more generic service to all the 
children in various contexts and must be more flexible, a constraint that can introduce 
more complexity into the parent class. 
 
Coupling Between Objects (CBO):  CBO is defined as the count of the number of other 
classes to which it is coupled [CHI].  A class is coupled to another class if it uses the 
member method and/or instance variables of the other class.  Excessive coupling 
indicates weakness of class encapsulation and may inhibit reuse.  High coupling also 
indicates that more faults may be introduced due to inter-class activities. 
 
Response for a Class (RFC):  RFC gives the number of methods that can potentially be 
executed in response to a message received by an object of that class [CHI].  If a large 
number of methods can be invoked in response to a message, the testing and debugging 
of the class becomes more complicated since it requires a greater level of understanding 
required on the part of the tester. 
 
Lack of Cohesion in Methods (LOCM):  LOCM counts the number of method pairs 
whose similarity is 0 minus the count of method pairs whose similarity is not zero.  The 
larger the number of similar methods in a class the more cohesive the class is [CHI].  
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Cohesiveness of methods within a class is desirable, since it promotes encapsulation and 
lack of cohesion implies classes should probably be split into two or more subclasses. 
2.3 Orthogonal Object-Oriented Metrics 
 
This subsection describes what it means for two or more object-oriented metrics to be 
orthogonal.  The main focus of this study is to produce a minimal set of Orthogonal 
Object-Oriented metrics capable of analyzing code quality with the same degree of 
accuracy as afforded by a metrics set of a significantly larger cardinality.          
 
Orthogonal:  Orthogonality is a measure of intrinsically different characteristics of the 
code, therefore any correlation among the measured values is due to relationships among 
the target modules and not due to any relationships among the actual metrics themselves.  
For example, lines of code and number of comments are said to be non-orthogonal since 
adding comments simultaneously increases lines of code.  However, source lines of code 
and number of comments are said to be orthogonal since source lines of code can be 
increased without any changes in the comment count. 
 
Orthogonal Object-Oriented (OOO):  Two object-oriented metrics are said to be 
Orthogonal Object-Oriented metrics if they are orthogonal.                                                                                
 
 
3. Theoretical Framework 
 
 
This section provides the foundation and justification of a theoretical framework for 
developing an Orthogonal Object-Oriented metrics suite.  Subsection 3.1 gives an 
overview of the more important aspects of the object-oriented paradigm.  The CK suite of 
object-oriented metrics is reduced to a single equation and one standalone metric in 
Subsection 3.2.  A discussion is presented in Subsection 3.3 on how to apply this reduced 
CK metrics suite.    
  
3.1 Overview of the Object-Oriented Paradigm 
 
Object-oriented modeling and design is a way of thinking about problems using models 
organized around real-world concepts.  The fundamental construct is the object, which 
combines both data structure and behavior in a single entity [RUM].  There are three 
fundamental characteristics required for an object-oriented approach:  encapsulation, 
polymorphism, and inheritance.  Encapsulation is not unique to the object-oriented 
paradigm; however polymorphism and inheritance are two aspects unique to the object-
oriented approach [TEG].  These three aspects of the object-oriented paradigm are 
described below. 
 
Encapsulation:  Encapsulation consists of separating the external aspects of an object, 
which are accessible to other objects from the internal implementation details of the 
object that are hidden from other objects.  Encapsulation prevents a program from 
becoming so interdependent that a small change has massive effects.  For example, the 
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implementation of an object can be changed without affecting the application that use it. 
One may want to change the implementation of an object to improve performance, fix a 
bug, consolidate code, or for porting. 
 
Polymorphism:  Polymorphism means having the ability to take several forms.  For 
object-oriented systems, polymorphism allows the implementation of a given operation to 
be dependent on the object that contains the operation.  For example, there can be 
different operations to pay employees based on the employee’s object type, e.g., part-
time, hourly, or salaried.  Each type of employee object can have its own customized 
compute-pay operation.  When a new type of employee is created, e.g., student, the 
programmer simply creates a new type of employee object and a new implementation of 
compute-pay for the new type of employee.  When an instance of student receives the 
message to compute-pay, it uses the operation defined in the new object to perform the 
calculation.  The compute-pay operations of the other types of employees are not affected 
by the payment operations required for the student.  In contrast, structured systems often 
have all pay operations contained in one program.  The program must be capable of 
differentiating between the different types of employees and applying the appropriate 
operation.  A modification to a new type of employee typically requires existing 
structured code to be changed.   
 
Inheritance:  Inheritance is a reuse mechanism that allows programmers to define objects 
incrementally by reusing previously defined objects as the basis for new objects.  For 
example, when defining a new type of employee (e.g., student), the new employee type 
can inherit the characteristics common to all employees (e.g., name, address), from a 
generic type of employee.  In this approach, the programmer needs only to be concerned 
with the difference between student employees and generic employees.  Structured 
systems do not have an inheritance mechanism as part of their formal specification. 
 
3.2 A Reduced CK Metrics Suite 
 
In Section 2 we listed the complete CK suite of object-oriented metrics, however they 
were not rigorously defined.  A subset of the suite is formally defined (name, definition, 
and theoretical basis) in this subsection in order to develop the reduced suite.  See [CHI] 
for the formal definitions of the complete set of the CK suite of object-oriented metrics.     
 
Metric 1: Weighted Methods Per Class (WMC) 
 
Definition 1:  Consider a class C1, with methods M1, …, Mn that are defined in the class.  
Let c1, …, cn be the complexity of the methods.  Then: 
 
                                                                            n 

WMC = ∑ ci. 
                                                                           i =1 
 
If all method complexities are considered to be unity, then WMC = n, the number of 
methods. 
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Theoretical Basis 1:  WMC relates directly to Bunge’s [BUN77], [BUN79] definition of 
complexity of a thing, because methods are properties of object classes and complexity is 
determined by the cardinality of its set of properties.  The number of methods is therefore 
a measure of the class definition as well as attributes of a class, because attributes 
correspond to properties. 
 
Metric 2: Coupling Between Objects (CBO) 
 
Definition 2:  CBO for a class is the count of the number of other classes to which it is 
coupled. 
 
Theoretical Basis 2:  CBO relates to the notion that an object is coupled to another object 
if one of them acts on the other, i.e., methods of one use methods or instance variables of 
another.  Since objects of the same class have the same properties, two classes are 
coupled when methods declared in one class use methods or instance variables defined by 
the other class. 
 
Metrics 3: Response for a Class (RFC) 
 
Definition 3:  RFC = |RS| where RS is the response set for the class. 
 
Theoretical Basis 3:  The response set for the class can be expressed as 
 

RS = {M}Uall i{Ri} 
 
where {Ri} = set of methods called by method i and {M} = set of all methods in the class. 
 
The response set of a class is a set of methods that can potentially be executed in 
response to a message received by an object of that class.  The cardinality of this set is a 
measure of the attributes of objects in the class.  Since it specifically includes methods 
called from outside the class, it is also a measure of the potential communication between 
the class and other classes. 
 
The formal definitions above are now used to construct an equation relating two out of 
the three more important aspects (encapsulation, polymorphism, and inheritance) of the 
object-oriented paradigm namely, encapsulation and polymorphism.  From Definition 3 
we have:  
 

RFC = NLM + NRM  (1) 
 
where NLM = number of local methods in a class and NRM = number of remote methods 
called from a class.  Definition 1 stated that if all the method complexities in a class are 
considered to be unity, then WMC = n, the number of methods in the class, which gives 
NLM = WMC [CHI]. 
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It was mentioned in Section 2 that excessive coupling between objects indicates 
weakness of class encapsulation and may inhibit reuse.  However, some coupling 
between objects is necessary for objects to be able to interact with each other.  Ideally, 
objects should be coupled as loosely as possible in order to promote encapsulation and 
reusability.  This is accomplished by having objects interact with which other exclusively 
through their interface.  There are other types of coupling. The CBO metric defined in 
Definition 2 describes objects that are tightly coupled; the objects are accessed internally 
though remote methods calls (NRM) to other object methods or instance variables.         
 
Because tight coupling between objects is undesirable, we shall use this fact as one of the 
cornerstones in identifying low quality software.  On average, the number of remote 
method calls is much larger than the number of instance variables accessed from one 
object to the next.  Thus, under tight coupling of objects the number of remote methods 
calls approximates the measure of coupling between objects that is NRM ≈ CBO.  
 
Substituting the metrics WMC and CBO for NLM and NRM respectively into Equation 1 
(RFC = NLM +NRM) gives:  
 

RFC = WMC + CBO  (2). 
 
Equation 2 and the DIT metrics shall be used to identify low quality software in Section 
4, Empirical Investigation.   
 
3.3 Applying the Reduced Metrics Suite 
 
There are three fundamental aspects of the object-oriented paradigm, namely 
encapsulation, polymorphism, and inheritance.  The equation RFC = WMC + CBO 
captures both encapsulation and polymorphism and their relationship to each other.  High 
values for WMC and CBO indicate low encapsulation [HUD], [LOR93], [LOR94] a class 
may be implementing too much of a system’s functionality or may be coupled too tightly.  
The RFC metric measures polymorphism by recording the number of remote method 
calls by the class, for example, virtual methods in the C++ programming language is a 
direct implementation of the concept of polymorphism.  It is clear that the DIT metric 
quantifies the inheritance aspect of the object-oriented paradigm and should need no 
further explanation. 
 
Examining equation RFC = WMC + CBO more closely suggests that if WMC and CBO 
increases then RFC also increases and if WMC and CBO decreases, RFC also decreases.  
If objects in a system are loosely coupled (one indicator of high quality code) then the 
CBO metric will be low and increases in RFC are due to WMC.  That is, including more 
methods in a class increases the RFC metric but since coupling is loose, the CBO metric 
should not significantly increase.  On the other hand, if objects in a system are tightly 
coupled (one indicator of low quality code) then the CBO metric will be high and 
increases in RFC would be due to both CBO and WMC.  Different researchers like Kidd, 
Lorenz, [LOR94] and Rosenberg [ROS97] give similar preferred highest values for these 
object-oriented metrics along with values for the DIT metric also.     
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Thus, as coupling between objects increases, the equation RFC = NLM + NRM 
approaches the equation RFC =  WMC + CBO.  This can be used to identify low quality 
object-oriented systems and with the DIT metrics capture the three more important 
aspects of the object-oriented paradigm: encapsulation, polymorphism, and inheritance. 
 
This section provides theoretical justification for suggesting the completeness and 
sufficiency of a minimal set of object-oriented metrics for analyzing the quality of an 
object-oriented system, where some of the metrics were related in the form of an 
equation.  The next section applies this reduced set of object-oriented metrics to three real 
world projects to measure their overall quality and compare the results with the results 
obtained from using a larger set of both traditional and object-oriented metrics.        
 
 
4. Empirical Investigation 
 
 
This section applies the results obtained in the study to three industrial strength software 
systems.  The outcome is validated with previous results obtained from extensive full-
scale code analysis performed by the SATC on the same three systems.  
 
Subsection 4.1 describes the software applications used in validating the reduced object-
oriented metrics set in detail.  The statistical terminologies used in the investigation are 
defined and discussed in Subsection 4.2 and the statistical analysis is conducted in 
Subsection 4.3. 
 
4.1 Descriptions of the Applications 
 
The three applications used in this empirical study to validate the reduced object-oriented 
metrics set are industrial strength software.  Two of the applications were NASA systems 
and one was a commercial product.  We labeled the applications as: System A, System B, 
and System C.  System A was the commercial software implemented in Java and 
consisted of approximately 50,000 lines of code and had 46 classes.  One of the NASA 
software applications was also implemented in Java and consisted of approximately 
300,000 lines of code and contained 1,000 classes.  We labeled this application System B.  
The last application, System C, was also a NASA product approximately consisting of 
500,000 lines of code distributed over 1,617 classes.  System C was implemented in the 
C++ programming language.   
 
Table 1 summarizes this descriptive information along with other information for each 
System.  The last two rows in the table were obtained from the SATC full-scale code 
analysis of these systems.  The table shows a direct positive correlation between the 
degree of object-oriented constructs and the level of quality for each software application.    
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Table 1: Summary of Applications used to Validate Reduced CK Metrics Set  
 

System  A B C 
Lines of Code 50k 300k 500k 
Number of Classes 46 1000 1617 
Language Java Java C++ 
Type of Application Commercial Software NASA Software NASA Software 
Code Construct Object-Oriented Excellent Object-Oriented Good Object-Oriented 
Quality Low High Medium 

  
 
4.2 Definitions for Statistical Analysis 
 
In order to investigate the correlations and relationships between the object-oriented 
metrics and software quality we conducted a correlation and a multiple linear regression 
analysis.  Definitions and discussions on the terminologies used in the correlation and 
regression analysis are provided in this section.  
 
A multiple linear regression model can be defined as  
 

Y = β0 + β1X1 + β2X2 + … + βpXp + ε  (3). 
 
The various components of the regression model above along with other statistical 
terminologies used in the paper are listed below: 
 
Independent Variable (Xi’s):  The independent variable in an experiment is the variable 
that is systematically manipulated by the investigator.  In most experiments, the 
investigator is interested in determining the effect that one variable; has on one or more 
of the other variables.  In the regression model [3] the Xi’s denote the independent 
variables.   
 
Dependent Variable (Y):  The dependent variable in an experiment is the variable that the 
investigator measures to determine the effect of the independent variable.  In the 
regression equation [3] variable Y denotes the dependent variable.  
 
Random Error (ε):  The variation in the observed data that is not accounted for by the 
model.  In the regression model [3] the random error is denoted by ε.   
 
Coefficients (βi’s):  The estimated multiple linear regression coefficients measure the 
respective independent variable’s contribution on the dependent variable.  The larger the 
absolute coefficient values, the larger (positive or negative according to the sign) the 
impact of the independent variable on the dependent variable.  In the regression model 
[3] β0 represents the constant term.   
 
Linear Correlation Coefficient (r):  The linear correlation coefficient expresses 
quantitatively the magnitude and direction of the linear relationship between two 
variables.  A correlation coefficient can vary from +1 to ─1.  The sign of the coefficient 
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tells us whether the relationship is positive or negative.  The numerical part of the 
correlation coefficient describes the magnitude of the correlation.  The higher the 
number, the greater the correlation.   
 
The Statistical Significance (p-value):  Represents the degree of accuracy of coefficient 
estimation.  More specifically, the p-value represents the probability of error that is 
involved in accepting observed results as valid.  The larger the p-value, the less 
believable the estimated impact of the explanatory independent variable (OO metric).  In 
our study we used 0.05 as the significance threshold. 
 
The Goodness of Fit (R2):  The goodness of fit is an indicator of how well the model fits 
the data.  The higher the value of R2, the more accurate the model is. 
 
4.3 Statistical Analysis 
 
Figures 1 – 3 show the distributions of the reduced CK object-oriented metrics suite 
namely, the RFC, CBO, WMC, and DIT metrics for the three systems.  The percentage of 
classes is on the x-axis and the metrics values on the y-axis.  The distributions for 
Systems A, B, and C included 46 Java, 1,000 Java, and 1,617 C++ classes respectively.   
 
The shapes of the distributions for all the metrics are similar between systems except for 
the DIT metric.  The shape of the DIT metric for Systems B and C are similar.  However, 
System A exhibits a different distribution from both Systems B and C.  The distribution 
for System A shows that over 60% of the classes in that system had a DIT metric of 0, 
suggesting a lack of reuse via inheritance. 
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Figure 1:  Distributions of the Reduced CK Metrics Set for System A 
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Figure 2:  Distributions of the Reduced CK Metrics Set for System B 
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Figure 3:  Distributions of the Reduced CK Metrics Set for System C 
 
 
The descriptive statistics and the correlations between the metrics for each system are 
given in Tables 2 – 7.  The values in bold are the mean values of the reduced metrics set.  
The descriptive statistics for Systems A, B, and C are included on 46 Java, 1,000 Java, 
and 1,617 C++ classes respectively. The descriptive statistics tables show that the mean 
values for the CBO, RFC, and WMC metrics for System B and C are lower than the 
values for System A indicating higher code quality for System B and C over System A. 
 
In the descriptive statistics tables the values are provided for the full set of the    CK 
metrics suite for completeness although we only used the reduced set highlighted in bold.  
The correlation results (tables) are discussed at the end of this section in conjunction with 
the regression models.  
 
 

Table 2:  Descriptive Statistics for System A 
                                                                                                            

 Minimum Maximum Mean Std. Deviation
CBO 0 11 2.48 2.93
LCOM 0 3804 447.65 1015.03
RFC 0 381 80.39 101.91 
NOC 0 2 0.07                  0.32
DIT 0 2 0.37 0.53
WMC 0 596 45.70 110.95
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Table 3:  Correlation Analysis for System A 
 

 CBO LCOM RFC NOC DIT WMC
CBO 1 0.36   0.83  -0.17  -0.20    0.43
LCOM 1   0.66  -0.09  -0.09 0.03
RFC 1  -0.16  -0.22    0.47
NOC 1  -0.01   -0.08
DIT 1   -0.03
WMC 1

 
 

Table 4:  Descriptive Statistics for System B 
 

 Minimum Maximum Mean Std. Deviation
CBO 0 22 1.25 2.01
LCOM 0 5444 78.34 284.72
RFC 0 827 43.84 65.31
NOC 0 21 0.35 1.66
DIT 0 4 0.97 0.69
WMC 0 381 11.10 26.12

 
 

Table 5:  Correlation Analysis for System B 
 

 CBO LCOM RFC NOC DIT WMC
CBO 1 0.10 0.28 -0.03 0.34 0.11
LCOM 1 0.76 -0.01 0.10 0.68
RFC 1 -0.09 0.16 0.75
NOC 1 -0.10 -0.07
DIT 1 0.05
WMC 1

 
 

Table 6:  Descriptive Statistics for System C 
 

 Minimum Maximum Mean Std. Deviation
CBO 0 16 2.09 2.05
LCOM 0 3281 113.94 266.03
RFC 0 457 28.60 36.24
NOC 0 116 0.39 3.22
DIT 0 6 1.02 0.98
WMC 0 492 23.97 40.26
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Table 7:  Correlation Analysis for System C 
 

  CBO LCOM RFC NOC DIT WMC
CBO 1 0.25 0.35 0.00 0.33 0.26
LCOM 1 0.61 0.05 -0.02 0.48
RFC 1 0.01 -0.00 0.83
NOC 1 -0.01 0.00
DIT 1 -0.10
WMC 1

 
 
Tables 3, 5, and 7 present the correlation analysis for the CK object-oriented metrics suite 
over the various software systems.  The values in bold are the mean values of the reduced 
metrics set excluding the DIT metric.  A correlation analysis was conducted for Systems 
A, B, and C where the systems had 46 Java, 1,000 Java, and 1,617 C++ classes 
respectively.  Table 8 summarizes the results of the correlation analysis for the reduced 
metrics set over the various software systems.  The columns list the correlation values for 
each pair of metrics in the reduced metrics set and the rows list the system.  In the table 
Metric 1 x Metric 2 = correlation between Metric 1 and Metric 2. 
 
Examining Table 8 shows that for System A all of the metrics are highly correlated with 
each other, with CBO and RFC being the most significantly correlated.  This suggests 
low quality code because RFC increases due to tight coupling in the system and not 
because of the introduction of methods into the system.  Equation 2 shows that RFC = 
WMC + CBO.  The opposite is true for System B and C, that is, the correlation between 
CBO and RFC is low and between CBO and WMC.  However, the correlation between 
RFC and WMC is high. This shows that RFC increases as the number of methods 
increases in these applications, using Equation 2.  These results show that Systems B and 
C consist of loosely coupled objects, implying high quality code with System B having 
high quality.  Similar findings were obtained from the regression analysis.   
 
 

Table 8:  Correlation Analysis Summary 
 

 CBOxRFC CBOxWMC RFCxWMC 
System A 0.83 0.43 0.47 
System B 0.28 0.11 0.75 
System C 0.35 0.26 0.83 

 
 
The multiple linear regression model listed in Equation 4 was fitted to the reduced set of 
metrics for Systems A, B, and C respectively and the results are given in Table 9.   
 

RFC = βWMCWMC + βCBOCBO + Constant  (4) 
 
The standardized coefficients (βi’s) for the regression model of each system were all 
significant at the 0.01 level and each having a p-value of 0.000, except for the coefficient 
of the WMC metric for System A where βWMC and Constant had a p-value of 0.160 and 
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0.466 respectively at a level of significance of 0.01.  These results reinforce the findings 
of the correlation analysis suggesting that objects in System A are tightly coupled and 
increases in the RFC metric are due to increases in CBO and not WMC, implying low 
quality code.   
 
On the other hand the results for Systems B and C are the reverse.  This can be explained 
by observing the magnitudes of the standardized coefficients for both of the independent 
variables WMC and CBO in the model since they were both significant.  The magnitude 
of the coefficient for the independent variable WMC is approximately four times larger 
than that of CBO for Systems B and C.  This implies that increases to the RFC metric are 
due to an increase in the number methods in a class and not to an increase in coupling.  
Thus Systems B and C consist of loosely coupled objects indicating high quality code.   
 
 

Table 9:  Regression Analysis Summary 
 

Estimated Parameters System A System B System C 
βWMC (Unstandardized)  0.120 1.831 0.712 
βCBO (Unstandardized) 26.985 6.471 2.623 
Constant (Unstandardized) 8.036 15.427 6.039 
βWMC (Standardized)  0.131 0.732 0.792 
βCBO (Standardized) 0.777 0.200 0.148 
R2 0.708 0.608 0.708 

 
 
The quality of the code for System B is of a higher quality than System C with respect to 
the magnitudes of the standardized coefficients in the regression models.  Also the fit of 
the regression model over each system was appropriate since each had an R2 of 
approximately 70%. 
 
In the correlation and regression analysis the three main aspects of the object-oriented 
paradigm, encapsulation, polymorphism, and inheritance were not explicitly mentioned in 
relation to code quality.  However, the coupling of objects in the systems was discussed 
at length in conjunction with code quality using the CBO metric and this metric measures 
encapsulation.  Polymorphism of a system is measured indirectly by the metrics RFC and 
WMC, and these metrics were related in Equations 2 and 4.  Although the case of 
inheritance was not dealt with in the correlation and regression analysis, the inheritance 
over the systems was evaluated using the DIT metric, as shown in the descriptive 
statistics table for each system.    
 
 
5. Conclusions and Future Work 
 
 
We have constructed a simple and easy to use minimal set of Orthogonal Object-Oriented 
metrics in the form of an equation and one standalone metric, which can be used to 
evaluate software quality, using the CK suite of object-oriented metrics as a superset.  
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This was accomplished by observing that the correlation of the metrics contained in the 
CK metrics suite increased as the quality of code decreased.  This motivated a 
relationship between some of the metrics in the CK suite of object-oriented metrics.     
 
The reduced metrics suite was validated using three industrial strength software systems. 
By comparing the results obtained from the reduced metrics set approach with the results 
obtained from a full-scale code analysis conducted using the entire CK object-oriented 
metrics suite together with traditional metrics.  The reduced metrics set approach was 
able to classify the software systems with respect to the level of code quality.  Both the 
reduced metrics set approach and the full metrics set (CK metrics suite and traditional) 
approach resulted in the same software quality system classification.  System A was low 
quality software, System B was high, and System C was medium. 
 
The reduced CK metrics set approach is very promising.  A word of caution is prudent at 
this point:  the reduced metrics set approach is not a silver bullet.  The approach is more 
applicable to identifying low quality code than high, due to specific theoretical concepts 
employed to develop the approach.  However, this is a mammoth step in the right 
direction in reducing the turnaround time it takes to perform a code analysis on industrial 
strength software.  Future research should be conducted with the aim of developing more 
appropriate reduced metrics set models for identifying high quality code and how this 
reduced object-oriented metrics set approach can be integrated into the software 
development lifecycle.       
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